Dr. Barry Haworth University of Louisville Department of Economics Economics 202-04 Spring 2020

Homework #2 (due by 9:00pm on Thursday, January 30)

Please submit your answers to this homework through the Assignment link at Blackboard. No credit will be given for answers submitted in class or emailed to the professor, regardless of the excuse. This includes unique excuses like my dog ate my homework or aliens showed up in my dorm and accidently deleted my homework, as well as more traditional excuses like "I lost my Internet". Please note that all submissions are final, again – regardless of the excuse (which includes "I accidentally hit the submit button"). When you go to Blackboard, you should see that you can save your answers, or "Save and Submit". Use the Save and Submit button to submit your answers. If you are unfamiliar with Blackboard, then it would be a good idea to visit the class page at Blackboard and check out the homework assignments as they are posted.

Please note that when Blackboard grades homework answers, more specifically when Blackboard grades answers to any fill-in-the-blank questions – your answer must match exactly with the answer that Blackboard is looking for. Below, you'll find some instructions on how to properly format these answers. Reading this section is strongly recommended.

Questions 1 and 4-6

Note that on Question #1 and Questions #4-5, you'll be referred to a file with data reported in different tables which you will use to answer those questions. As noted within each of those questions, these files are posted in the **Homework #2 material** folder in "Course Documents" at Blackboard.

In Question #6a and b, you're asked to calculate a value for real income within a specific region of the country. Your answer in both parts should be expressed in terms of dollars and rounded to the nearest whole dollar. E.g., twenty dollars and 30 cents would be written as \$20, rather than \$20.30, 20.30 or 20.

If you have any questions on how to express an answer, then be sure to ask before you submit the homework for grading.

Homework #2 Questions

1. We'll be using data from the Energy Information Administration website on the monthly price and quantity sold for residential electricity within Kentucky. That data is provided in the file "Residential Electricity Prices and Quantity Sold: Kentucky" within the Homework #2 material folder that's posted in Course Documents at Blackboard.

Assume that the demand and supply curves associated with this market have their "typical slope" (i.e. that the demand curve in this market has a negative slope, and the supply curve a positive slope). Assume also that the prices and quantities you observe in the tables represent the equilibrium price (P^*) and equilibrium quantity (Q^*) in this market.

In each problem below, you're provided with a pair of months. Your first task is to determine how the price and quantity changed between these two months. Under the assumption that the price is an equilibrium price and the quantity is an equilibrium quantity, you have information that tells you how the equilibrium changed between the two months. Given the changes that must have occurred, you must infer which shift(s) took place to give us that change in equilibrium.

Match the pair of dates (and implied change in P* and Q*) on the left to the appropriate shift(s) on the right. Note that the shift(s) must always explain the result you found (i.e. it can't be correct under certain circumstances, it must always be correct in a market where the curves have their regular slopes – as assumed above). E.g., if you discover that both P* decreases and Q* increases between Dec 2018 and Jan 2019, and you think this is best explained by an increase in demand, then your answer for *part a* would be "A".

Change in P* and Q*:

- a. Dec 2018 to Jan 2019
- b. Jan 2019 to Feb 2019
- c. Feb 2019 to Mar 2019
- d. Mar 2019 to Apr 2019
- e. Apr 2019 to May 2019

Shift in curve(s):

- A. Increase in demand
- B. Decrease in demand
- C. Increase in supply
- D. Decrease in supply
- E. Increase in demand and increase in supply
- F. Decrease in demand and decrease in supply
- G. Increase in demand and decrease in supply
- H. Decrease in demand and increase in supply

2. Assume that Louisville (e.g. Jefferson County) has a market for retail gasoline and that similar, but alternative retail gas markets also exist in southern Indiana, and in counties adjacent to Louisville, like Oldham County and Bullitt County.

Let's analyze the **retail gasoline market in Louisville** (i.e. we will be trying to predict how the Louisville market is affected by various events). Below, you must determine how each of the five different events affect this market in terms of causing a shift or shifts in the demand and supply for retail gasoline in Louisville. Match each event below with the appropriate shift(s). E.g., if you believe that improved technology with gas pumps from "part a" causes a decrease in the Supply within the Louisville retail gasoline market, then your answer would be "D".

Events:

a. Improved technology with the gas pumps that dispense gasoline to consumers

b. Changes in state law which increase the number of drivers in cities like Louisville

c. Changes in state law which bans consumers from pumping their own gas, a ban that raises the cost of supplying gas because gas stations must now hire additional employees to pump gas for consumers (similar to existing laws in states like Oregon and New Jersey)

d. Increase in consumer income

e. Increase in gas prices within counties adjacent to Louisville (e.g. Oldham and Bullitt Counties).

Effect: Shift in Curve(s) within the Louisville gasoline market

A. Increase (shift right) in Demand for Louisville gasoline

B. Decrease (shift left) in Demand for Louisville gasoline

C. Increase (shift right) in Supply of Louisville gasoline

D. Decrease (shift left) in Supply of Louisville gasoline

E. Increase (shift right) in Demand for Louisville gas <u>and</u> Increase (shift right) in Supply of Louisville gas

F. Decrease (shift left) in Demand for Louisville gas <u>and</u> Decrease (shift left) in Supply of Louisville gas

G. Increase (shift right) in Demand for Louisville gas <u>and</u> Decrease (shift left) in Supply of Louisville gas

H. Decrease (shift left) in Demand for Louisville gas <u>and</u> Increase (shift right) in Supply of Louisville gas

3. Continue analyzing the market from question #2, the Louisville retail gasoline market, and predict how various events will most likely affect the current equilibrium price and quantity of retail gasoline within Louisville. E.g., if you believe that the expectation of higher gas prices during Derby Week leads to an increase in the current equilibrium price and quantity of retail gasoline within the current Louisville gasoline market, then your answer would be "A".

Events:

a. We are 7 days away from Derby Week, a week when there will be a big influx of visitors to the Louisville area which causes gas prices to significantly increase during Derby Week.

b. the Federal (US) government drops the requirement that Louisville area gas stations sell reformulated gasoline, lowering the cost of supplying gasoline within the Louisville area.

c. Increases in the productivity of Louisville gas stations

d. Strict new city government health and safety regulations lead to the exit of gas stations from the Louisville market and into a neighboring market (e.g. Oldham County or Bullitt County).

e. Indiana State government enacts a significant increase in the tax on suppliers of gasoline in that state.

Effect: ΔP^* and ΔQ^* in the Louisville gas market

A. Increase in equilibrium price and increase in equilibrium quantity

- B. Decrease in equilibrium price and decrease in equilibrium quantity
- C. Increase in equilibrium price and decrease in equilibrium quantity
- D. Decrease in equilibrium price and increase in equilibrium quantity

4. To answer this question, you must access the *cpi.pdf* file created by the Bureau of Labor Statistics (BLS). This file is located in the Homework #2 material folder in Course Documents at Blackboard. This file shows different values for the Consumer Price Index for All Urban Consumers (CPI-U) by expenditure category.

In the first column of this table, you'll see the heading "Expenditure Category" at the top of the column. In column 2, you'll see the heading "Relative Importance, June 2019", followed by a column for "unadjusted indexes" for July 2019.

Using the column under the heading "unadjusted indexes" for July 2019, answer the following question. Note that you are simply reporting the number you find in the table, and you're not calculating anything.

The value of the July 2019 CPI for "All items" is _____

note: express the CPI value exactly as stated in the table (do not round it).

5. To answer this question, you must access the *cpi.pdf* file created by the Bureau of Labor Statistics (BLS). This file is located in the Homework #2 material folder in Course Documents at Blackboard.

Note that the second column of this table provides the "Relative Importance, June 2019" for each expenditure category. These values are the weights or levels of importance we discussed in class. Report the relative importance of each expenditure category below. Note: you must record the value exactly as you see it in the table (e.g. the value for Food, is 13.232). Also, *there is no partial credit on this question*, your overall answer must be completely correct.

Expenditure category	Relative Importance/Weight (June 2019)
Food	
Energy	
Apparel	
Housing	
Education & Communication	
Recreation	
Medical Care	
Transportation	
Personal Care	

6. On the CPI table below (<u>next page</u>), you're provided with the July 2019 CPI for four different regions of the U.S. and then for several major U.S. city areas. Use the CPI data on regions in this table to answer questions 6a and 6b.

a. A typical resident within the Midwest US region who earns a nominal income of

\$11,000 during this period would have a real income of _____

Note: express your answer in terms of dollars, not dollars and cents, and round to the nearest whole dollar if necessary.

b. A typical resident within the Northeast US region who earns a nominal income of \$11,000 during this period would have a real income of: ______

Note: express your answer in terms of dollars, not dollars and cents, and round to the nearest whole dollar if necessary.

Regions	CPI-U
West	271.029
Midwest	238.760
Northeast	270.381
South	247.250
Major Cities	CPI-U
Boston-Cambridge-Newton, MaN.H.	280.943
Atlanta, GA	243.087*
San Francisco, CA	295.259*
Chicago-Naperville, Elgin, IL	241.589
Cincinnati-Hamilton, OH-KY-IN	230.427**
Los Angeles, CA	274.682
Houston-The Woodlands-Sugar Land, TX	229.316*
Seattle-Tacoma-Bellevue, WA	278.631*
Minneapolis-St. Paul-Bloomington, MN-WI	251.802

Consumer Price Index for All Urban Consumers (CPI-U): All Items, selected regions and cities, July 2019 (1982-84=100)

* June 2019

** second half, 2017

7. Use the table above to answer question 7.

Assume that you have an individual with \$5,000 in nominal income during July 2019. Based upon the table above, in which major city area would the real income of this individual be highest?

- a) Boston-Cambridge-Newton, Ma.-N.H.
- b) Atlanta, GA
- c) San Francisco, CA
- d) Chicago-Naperville, Elgin, IL
- e) Cincinnati-Hamilton, OH-KY-IN
- f) Los Angeles, CA
- g) Houston-The Woodlands-Sugar Land, TX
- h) Seattle-Tacoma-Bellevue, WA
- i) Minneapolis-St. Paul-Bloomington, MN-WI

8. The chart below provides you with information about Presidential salaries in specific years and the CPI for each of those years. Use this information to answer the question on the next page that refers to the table.

US Presidents and their (nominal) salaries			
Year	President	Nominal Salary	CPI (2010=100)
1789	Washington	\$25,000	7.8
1873	Grant	\$50,000	5.5
1909	Taft	\$75,000	4.1
1949	Truman	\$100,000	10.9
1969	Nixon	\$200,000	16.8
2001	Bush	\$400,000	81.0
2011	Obama	\$400,000	100.0
2017	Trump	\$400,000	112.4

Based on the table from the previous page, which President had the greatest real salary? (note: real salary is the same as real income)

- a. George Washington
- b. Ulysses Grant
- c. Howard Taft
- d. Harry Truman
- e. Richard Nixon
- f. George W. Bush
- g. Barack Obama
- h. Donald Trump